{ "id": "1702.07867", "version": "v1", "published": "2017-02-25T10:00:39.000Z", "updated": "2017-02-25T10:00:39.000Z", "title": "Topological properties of strict $(LF)$-spaces and strong duals of Montel strict $(LF)$-spaces", "authors": [ "Saak Gabriyelyan" ], "comment": "arXiv admin note: text overlap with arXiv:1611.02994", "categories": [ "math.FA", "math.GN" ], "abstract": "Following [2], a Tychonoff space $X$ is Ascoli if every compact subset of $C_k(X)$ is equicontinuous. By the classical Ascoli theorem every $k$-space is Ascoli. We show that a strict $(LF)$-space $E$ is Ascoli iff $E$ is a Fr\\'{e}chet space or $E=\\phi$. We prove that the strong dual $E'_\\beta$ of a Montel strict $(LF)$-space $E$ is an Ascoli space iff one of the following assertions holds: (i) $E$ is a Fr\\'{e}chet--Montel space, so $E'_\\beta$ is a sequential non-Fr\\'{e}chet--Urysohn space, or (ii) $E=\\phi$, so $E'_\\beta= \\mathbb{R}^\\omega$. Consequently, the space $\\mathcal{D}(\\Omega)$ of test functions and the space of distributions $\\mathcal{D}'(\\Omega)$ are not Ascoli that strengthens results of Shirai [20] and Dudley [5], respectively.", "revisions": [ { "version": "v1", "updated": "2017-02-25T10:00:39.000Z" } ], "analyses": { "subjects": [ "46A13", "46A11", "22A05" ], "keywords": [ "montel strict", "strong dual", "topological properties", "compact subset", "tychonoff space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }