{ "id": "1702.07848", "version": "v1", "published": "2017-02-25T07:36:57.000Z", "updated": "2017-02-25T07:36:57.000Z", "title": "Arithmetic intersection on GSpin Rapoport-Zink spaces", "authors": [ "Chao Li", "Yihang Zhu" ], "comment": "Comments welcome", "categories": [ "math.NT", "math.AG" ], "abstract": "We prove an explicit formula for the arithmetic intersection number of diagonal cycles on GSpin Rapoport-Zink spaces in the minuscule case. This is a local problem arising from the arithmetic Gan-Gross-Prasad conjecture for orthogonal Shimura varieties. Our formula can be viewed as an orthogonal counterpart of the arithmetic-geometric side of the arithmetic fundamental lemma proved by Rapoport-Terstiege-Zhang in the minuscule case.", "revisions": [ { "version": "v1", "updated": "2017-02-25T07:36:57.000Z" } ], "analyses": { "subjects": [ "11G18", "14G17", "22E55" ], "keywords": [ "gspin rapoport-zink spaces", "minuscule case", "arithmetic fundamental lemma", "arithmetic gan-gross-prasad conjecture", "orthogonal shimura varieties" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }