{ "id": "1702.07812", "version": "v1", "published": "2017-02-25T00:39:06.000Z", "updated": "2017-02-25T00:39:06.000Z", "title": "Modularity of generating series of divisors on unitary Shimura varieties", "authors": [ "Jan Bruinier", "Benjamin Howard", "Stephen S. Kudla", "Michael Rapoport", "Tonghai Yang" ], "categories": [ "math.NT" ], "abstract": "We form generating series of special divisors, valued in the Chow group and in the arithmetic Chow group, on the compactified integral model of a Shimura variety associated to a unitary group of signature (n-1,1), and prove their modularity. The main ingredient of the proof is the calculation of the vertical components appearing in the divisor of a Borcherds product on the integral model.", "revisions": [ { "version": "v1", "updated": "2017-02-25T00:39:06.000Z" } ], "analyses": { "subjects": [ "14G35", "11F55", "11F27" ], "keywords": [ "shimura variety", "unitary shimura varieties", "modularity", "arithmetic chow group", "main ingredient" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }