{ "id": "1702.07764", "version": "v1", "published": "2017-02-24T21:09:19.000Z", "updated": "2017-02-24T21:09:19.000Z", "title": "Coalescence and Minimal Spanning Trees of Irregular Graphs", "authors": [ "Yevgeniy Kovchegov", "Peter T. Otto", "Anatoly Yambartsev" ], "comment": "35 pages", "categories": [ "math.PR", "math.CO" ], "abstract": "In this paper we devise a method of finding the limiting mean length of a minimal spanning tree for a random graph via the Smoluchowski coagulation equations for the corresponding coalescent process. In particular, we use this approach for finding the limiting mean length of a minimal spanning tree for the Erdos-Renyi random graph on an asymmetric bipartite graph, producing a completely new formula yet consistent with the previously known formula for the symmetric bipartite graph $K_{n,n}$.", "revisions": [ { "version": "v1", "updated": "2017-02-24T21:09:19.000Z" } ], "analyses": { "subjects": [ "60C05", "05C80" ], "keywords": [ "minimal spanning tree", "irregular graphs", "limiting mean length", "coalescence", "asymmetric bipartite graph" ], "note": { "typesetting": "TeX", "pages": 35, "language": "en", "license": "arXiv", "status": "editable" } } }