{ "id": "1702.07407", "version": "v1", "published": "2017-02-23T22:07:27.000Z", "updated": "2017-02-23T22:07:27.000Z", "title": "Binary quartic forms with bounded invariants and small Galois groups", "authors": [ "Cindy", "Tsang", "Stanley Yao Xiao" ], "comment": "45 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we enumerate the $\\operatorname{GL}_2(\\mathbb{Z})$-equivalence classes of integral binary quartic forms which are fixed under substitution by a particular matrix in $\\operatorname{GL}_2(\\mathbb{R})$ which is proportional over $\\mathbb{R}$ to an integer matrix. In particular, whenever such a form $F$ is irreducible, the Galois group of the splitting field of $F$ is isomorphic to a subgroup of the dihedral group $\\mathcal{D}_4$ of order eight. We also give a new criterion for when the negative Pell's equation $x^2 - Dy^2 = -1$ is soluble in integers $x$ and $y$.", "revisions": [ { "version": "v1", "updated": "2017-02-23T22:07:27.000Z" } ], "analyses": { "subjects": [ "11E20", "14G25" ], "keywords": [ "small galois groups", "bounded invariants", "integral binary quartic forms", "integer matrix", "equivalence classes" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable" } } }