{ "id": "1702.07142", "version": "v1", "published": "2017-02-23T09:14:37.000Z", "updated": "2017-02-23T09:14:37.000Z", "title": "On the group of purely inseparable points of an abelian variety defined over a function field of positive characteristic II", "authors": [ "Damian Rössler" ], "categories": [ "math.AG" ], "abstract": "Let $A$ be an abelian variety over the function field $K$ of a curve over a finite field. We provide several conditions ensuring that $A(K^{\\rm perf})$ is finitely generated. This gives partial answers to questions of Scanlon and Ziegler on the one hand and Esnault and Langer on the other. We also describe the basics of a theory (used to prove our results) relating the Harder-Narasimhan filtration of vector bundles and the structure of finite flat group schemes over projective curves over finite fields.", "revisions": [ { "version": "v1", "updated": "2017-02-23T09:14:37.000Z" } ], "analyses": { "subjects": [ "14K05" ], "keywords": [ "purely inseparable points", "abelian variety", "function field", "positive characteristic", "finite flat group schemes" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }