{ "id": "1702.07062", "version": "v1", "published": "2017-02-23T01:41:54.000Z", "updated": "2017-02-23T01:41:54.000Z", "title": "Stochastic complex Ginzburg-Landau equation with space-time white noise", "authors": [ "Masato Hoshino", "Yuzuru Inahama", "Nobuaki Naganuma" ], "categories": [ "math.PR", "math.AP" ], "abstract": "We study the stochastic cubic complex Ginzburg-Landau equation with complex-valued space-time white noise on the three dimensional torus. This nonlinear equation is so singular that it can only be under- stood in a renormalized sense. In the first half of this paper we prove local well-posedness of this equation in the framework of regularity structure theory. In the latter half we prove local well-posedness in the framework of paracontrolled distribution theory.", "revisions": [ { "version": "v1", "updated": "2017-02-23T01:41:54.000Z" } ], "analyses": { "subjects": [ "60H15", "82C28" ], "keywords": [ "stochastic complex ginzburg-landau equation", "stochastic cubic complex ginzburg-landau equation", "local well-posedness", "regularity structure theory", "complex-valued space-time white noise" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }