{ "id": "1702.06938", "version": "v1", "published": "2017-02-22T18:51:25.000Z", "updated": "2017-02-22T18:51:25.000Z", "title": "Local Zeta Functions for Rational Functions and Newton Polyhedra", "authors": [ "Miriam Bocardo-Gaspar", "W. A. Zúñiga-Galindo" ], "categories": [ "math.AG" ], "abstract": "In this article, we introduce a notion of non-degeneracy, with respect to certain Newton polyhedra, for rational functions over non-Archimedean locals fields of arbitrary characteristic. We study the local zeta functions attached to non-degenerate rational functions, we show the existence of a meromorphic continuation for these zeta functions, as rational functions of $q^{-s}$, and give explicit formulas. In contrast with the classical local zeta functions, the meromorphic continuation of zeta functions for rational functions have poles with positive and negative real parts.", "revisions": [ { "version": "v1", "updated": "2017-02-22T18:51:25.000Z" } ], "analyses": { "subjects": [ "14G10", "11S40", "14M25" ], "keywords": [ "newton polyhedra", "meromorphic continuation", "non-archimedean locals fields", "non-degenerate rational functions", "classical local zeta functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }