{ "id": "1702.06692", "version": "v1", "published": "2017-02-22T07:25:44.000Z", "updated": "2017-02-22T07:25:44.000Z", "title": "Surgery formulae for the Seiberg-Witten invariant of plumbed 3-manifolds", "authors": [ "Tamás László", "János Nagy", "András Némethi" ], "comment": "24 pages", "categories": [ "math.GT", "math.AG" ], "abstract": "Assume that $M(\\mathcal{T})$ is a rational homology sphere plumbed 3-manifold associated with a connected negative definite graph $\\mathcal{T}$. We consider the combinatorial multivariable Poincar\\'e series associated with $\\mathcal{T}$ and its counting functions, which encode rich topological information. Using the `periodic constant' of the series (with reduced variables) we prove surgery formulae for the normalized Seiberg-Witten invariants: the periodic constant appears as the difference of the Seiberg-Witten invariants associated with $M(\\mathcal{T})$ and $M(\\mathcal{T}\\setminus\\mathcal{I})$, where $\\mathcal{I}$ is an arbitrary subset of the set of vertices of $\\mathcal{T}$.", "revisions": [ { "version": "v1", "updated": "2017-02-22T07:25:44.000Z" } ], "analyses": { "keywords": [ "seiberg-witten invariant", "surgery formulae", "rational homology sphere", "periodic constant appears", "encode rich topological information" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }