{ "id": "1702.05892", "version": "v1", "published": "2017-02-20T08:23:32.000Z", "updated": "2017-02-20T08:23:32.000Z", "title": "On the rate of convergence in the central limit theorem for hierarchical Laplacian", "authors": [ "Alexander Bendikov", "Wojciech Cygan" ], "categories": [ "math.PR" ], "abstract": "Let $(X,d)$ be a proper ultrametric space. Given a measure $m$ on $X$ and a function $C(B)$ defined on the set of all non-singleton balls $B$ we consider the hierarchical Laplacian $L=L_{C}$. Choosing a sequence $\\{\\varepsilon (B)\\}$ of i.i.d. random variables we define the perturbed function $C(B,\\omega )$ and the perturbed hierarchical Laplacian $L^{\\omega }=L_{C(\\omega )}.$ We study the arithmetic means $\\overline{\\lambda }(\\omega )$ of the $L^{\\omega }$-eigenvalues. Under some mild assumptions the normalized arithmetic means $\\big( \\overline{\\lambda }-\\mathbb{E}\\overline{\\lambda }\\big) /\\sigma \\big( \\overline{\\lambda }\\big) $ converge in law to the standard normal distribution. In this note we study convergence in the total variation distance and estimate the rate of convergence.", "revisions": [ { "version": "v1", "updated": "2017-02-20T08:23:32.000Z" } ], "analyses": { "subjects": [ "12H25", "60F05", "94A17", "47S10", "60J25" ], "keywords": [ "central limit theorem", "hierarchical laplacian", "convergence", "proper ultrametric space", "standard normal distribution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }