{ "id": "1702.05836", "version": "v1", "published": "2017-02-20T02:23:44.000Z", "updated": "2017-02-20T02:23:44.000Z", "title": "The socle filtrations of principal series representations of $SL(3,\\mathbb{R})$ and $Sp(2,\\mathbb{R})$", "authors": [ "Naoki Hashimoto", "Kenji Taniguchi", "Go Yamanaka" ], "comment": "46 pages", "categories": [ "math.RT" ], "abstract": "We study the structure of the $(\\mathfrak{g},K)$-modules of the principal series representations of $SL(3,\\mathbb{R})$ and $Sp(2,\\mathbb{R})$ induced from minimal parabolic subgroups, in the case when the infinitesimal character is nonsingular. The composition factors of these modules are known by Kazhdan-Lusztig-Vogan conjecture. In this paper, we give complete descriptions of the socle filtrations of these modules.", "revisions": [ { "version": "v1", "updated": "2017-02-20T02:23:44.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "principal series representations", "socle filtrations", "minimal parabolic subgroups", "composition factors", "complete descriptions" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable" } } }