{ "id": "1702.05535", "version": "v1", "published": "2017-02-17T22:28:28.000Z", "updated": "2017-02-17T22:28:28.000Z", "title": "A Lower Bound for the Number of Central Configurations on H^2", "authors": [ "Shuqiang Zhu" ], "comment": "19 pages, 1 figure", "categories": [ "math.CA", "math.DS" ], "abstract": "We study the indices of the geodesic central configurations on $\\H^2$. We then show that central configurations are bounded away from the singularity set. With Morse's inequality, we get a lower bound for the number of central configurations on $\\H^2$.", "revisions": [ { "version": "v1", "updated": "2017-02-17T22:28:28.000Z" } ], "analyses": { "keywords": [ "lower bound", "geodesic central configurations", "singularity set", "morses inequality" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }