{ "id": "1702.05440", "version": "v1", "published": "2017-02-17T17:13:57.000Z", "updated": "2017-02-17T17:13:57.000Z", "title": "Simple modules in the Auslander-Reiten quiver of principal blocks with abelian defect groups", "authors": [ "Shigeo Koshitani", "Caroline Lassueur" ], "comment": "19pages", "categories": [ "math.RT" ], "abstract": "Given an odd prime $p$, we investigate the position of simple modules in the stable Auslander-Reiten quiver of the principal block of a finite group with non-cyclic abelian Sylow $p$-subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is $3$, we prove that simple modules in the principal block all lie at the end of their components", "revisions": [ { "version": "v1", "updated": "2017-02-17T17:13:57.000Z" } ], "analyses": { "subjects": [ "20C20", "16G70" ], "keywords": [ "simple modules", "principal block", "abelian defect groups", "non-cyclic abelian sylow", "finite simple groups" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }