{ "id": "1702.05287", "version": "v1", "published": "2017-02-17T10:15:43.000Z", "updated": "2017-02-17T10:15:43.000Z", "title": "A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality", "authors": [ "Fashun Gao", "Minbo Yang" ], "comment": "17pages", "categories": [ "math.AP" ], "abstract": "In this paper we are concerned with the following nonlinear Choquard equation $$-\\Delta u+V(x)u =\\left(\\int_{\\mathbb{R}^N}\\frac{G(y,u)}{|x-y|^{\\mu}}dy\\right)g(x,u)\\hspace{4.14mm}\\mbox{in}\\hspace{1.14mm} \\mathbb{R}^N, $$ where $N\\geq4$, $0<\\mu