{ "id": "1702.05033", "version": "v1", "published": "2017-02-16T16:12:09.000Z", "updated": "2017-02-16T16:12:09.000Z", "title": "A Mini-Course on Morava Stabilizer Groups and Their Cohomology", "authors": [ "Hans-Werner Henn" ], "categories": [ "math.AT" ], "abstract": "The Morava stabilizer groups play a dominating role in chromatic stable ho-motopy theory. In fact, for suitable spectra X, for example all finite spectra, thechromatic homotopy type of X at chromatic level n \\textgreater{} 0 and a given prime p islargely controlled by the continuous cohomology of a certain p-adic Lie group Gn,in stable homotopy theory known under the name of Morava stabilizer group oflevel n at p, with coefficients in the corresponding Morava module (En)$\\star$X.", "revisions": [ { "version": "v1", "updated": "2017-02-16T16:12:09.000Z" } ], "analyses": { "keywords": [ "cohomology", "morava stabilizer groups play", "p-adic lie group gn", "morava stabilizer group oflevel", "mini-course" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }