{ "id": "1702.05029", "version": "v1", "published": "2017-02-16T16:02:44.000Z", "updated": "2017-02-16T16:02:44.000Z", "title": "Smoothness of moduli space of stable torsion-free sheaves with fixed determinant in mixed characteristic", "authors": [ "Inder Kaur" ], "comment": "14 pages, To appear in Proceedings of the conference on \"Analytic and Algebraic Geometry of Bundles\"", "categories": [ "math.AG" ], "abstract": "Let $R$ be a complete discrete valuation ring with fraction field of characteristic $0$ and algebraically closed residue field of characteristic $p>0$. Let $X_R \\to \\mathrm{Spec}(R)$ be a smooth projective morphism of relative dimension $1$. We prove that, given a line bundle $\\mathcal{L}_R$ the moduli space of Gieseker stable torsion-free sheaves of rank $r\\geq 2$ over $X_R$, with determinant $\\mathcal{L}_R$, is smooth over $R$.", "revisions": [ { "version": "v1", "updated": "2017-02-16T16:02:44.000Z" } ], "analyses": { "subjects": [ "14J60", "14D20" ], "keywords": [ "moduli space", "fixed determinant", "mixed characteristic", "smoothness", "gieseker stable torsion-free sheaves" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }