{ "id": "1702.04848", "version": "v1", "published": "2017-02-16T03:37:33.000Z", "updated": "2017-02-16T03:37:33.000Z", "title": "On the norm of the operator $aI+bH$ on $L^p(\\mathbb R)$", "authors": [ "Yong Ding", "Loukas Grafakos", "Kai Zhu" ], "comment": "9 pages", "categories": [ "math.CA" ], "abstract": "We provide a direct proof of the following theorem of Kalton, Hollenbeck, and Verbitsky \\cite{HKV}: let $H$ be the Hilbert transform and let $a,b$ be real constants. Then for $1
2$.", "revisions": [ { "version": "v1", "updated": "2017-02-16T03:37:33.000Z" } ], "analyses": { "subjects": [ "42A45", "42A50", "42A99" ], "keywords": [ "direct proof", "hilbert transform", "real constants", "conjugate function", "approximate extremals" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }