{ "id": "1702.04818", "version": "v1", "published": "2017-02-15T23:39:22.000Z", "updated": "2017-02-15T23:39:22.000Z", "title": "Observability and controllability of the 1--d wave equation in domains with moving boundary", "authors": [ "Abdelmouhcene Sengouga" ], "comment": "11 pages, 1 figure", "categories": [ "math.FA", "math.AP" ], "abstract": "By mean of generalized Fourier series and Parseval's equality in weighted $L^{2}$--spaces, we derive a sharp energy estimate for the wave equation in a bounded interval with a moving endpoint. Then, we show the observability, in a sharp time, at each of the endpoints of the interval. The observability constants are explicitly given. Using the Hilbert Uniqueness Method we deduce the exact boundary controllability of the wave equation.", "revisions": [ { "version": "v1", "updated": "2017-02-15T23:39:22.000Z" } ], "analyses": { "subjects": [ "35L05", "93B05" ], "keywords": [ "wave equation", "moving boundary", "exact boundary controllability", "hilbert uniqueness method", "sharp energy estimate" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }