{ "id": "1702.04648", "version": "v1", "published": "2017-02-15T15:18:49.000Z", "updated": "2017-02-15T15:18:49.000Z", "title": "Weighted Hardy spaces associated with elliptic operators. Part III: Characterizations of $H_L^{p}(w)$ and the weighted Hardy space associated with the Riesz transform", "authors": [ "Cruz Prisuelos-Arribas" ], "categories": [ "math.AP" ], "abstract": "We consider Muckenhoupt weights $w$, and define weighted Hardy spaces $H^p_{\\mathcal{T}}(w)$, where $\\mathcal{T}$ denotes a conical square function or a non-tangential maximal function defined via the heat or the Poisson semigroup generated by a second order divergence form elliptic operator $L$. In the range $0