{ "id": "1702.04572", "version": "v1", "published": "2017-02-15T12:18:27.000Z", "updated": "2017-02-15T12:18:27.000Z", "title": "Hopf potentials for Schroedinger operators", "authors": [ "Luigi Orsina", "Augusto C. Ponce" ], "categories": [ "math.AP" ], "abstract": "We establish the Hopf boundary point lemma for the Schr\\\"odinger operator $-\\Delta + V$ involving singular potentials $V \\in L^{1}_{\\mathrm{loc}}(\\Omega)$: we have that either the Hopf lemma holds for every nonnegative supersolution which vanishes on $\\partial\\Omega$ or it fails for every such a supersolution, almost everywhere with respect to the surface measure on $\\partial\\Omega$. The proof relies on the existence of nontrivial solutions of the nonhomogeneous Dirichlet problem with boundary datum in $L^{\\infty}(\\partial\\Omega)$.", "revisions": [ { "version": "v1", "updated": "2017-02-15T12:18:27.000Z" } ], "analyses": { "subjects": [ "35B05", "35B50", "31B15", "31B35" ], "keywords": [ "hopf potentials", "schroedinger operators", "hopf boundary point lemma", "hopf lemma holds", "singular potentials" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }