{ "id": "1702.04550", "version": "v1", "published": "2017-02-15T11:18:23.000Z", "updated": "2017-02-15T11:18:23.000Z", "title": "Singularity categories of derived categories of hereditary algebras are derived categories", "authors": [ "Yuta Kimura" ], "comment": "21 pages", "categories": [ "math.RT" ], "abstract": "We show that for the path algebra $A$ of an acyclic quiver, the singularity category of the derived category $\\mathsf{D}^{\\rm b}(\\mathsf{mod}\\,A)$ is triangle equivalent to the derived category of the functor category of $\\underline{\\mathsf{mod}}\\,A$, that is, $\\mathsf{D}_{\\rm sg}(\\mathsf{D}^{\\rm b}(\\mathsf{mod}\\,A))\\simeq \\mathsf{D}^{\\rm b}(\\mathsf{mod}(\\underline{\\mathsf{mod}}\\,A))$. This extends a result of Iyama-Oppermann for the path algebra $A$ of a Dynkin quiver. An important step is to establish a functor category analog of Happel's triangle equivalence for repetitive algebras.", "revisions": [ { "version": "v1", "updated": "2017-02-15T11:18:23.000Z" } ], "analyses": { "keywords": [ "derived category", "singularity category", "hereditary algebras", "path algebra", "functor category analog" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }