{ "id": "1702.04534", "version": "v1", "published": "2017-02-15T10:13:13.000Z", "updated": "2017-02-15T10:13:13.000Z", "title": "Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on $\\mathbb{R}^{N}$", "authors": [ "Claudianor O. Alves", "Alan C. B. dos Santos" ], "categories": [ "math.AP" ], "abstract": "In this paper, we establish existence and multiplicity of solutions for the following class of quasilinear field equation $$ -\\Delta u+V(x)u-\\Delta_{p}u+W'(u)=0, \\,\\,\\, \\mbox{in} \\,\\,\\, \\mathbb{R}^{N}, \\eqno{(P)} $$ where $u=(u_1,u_2,...,u_{N+1})$, $p>N \\geq 2$, $W$ is a singular function and $V$ is a positive continuous function.", "revisions": [ { "version": "v1", "updated": "2017-02-15T10:13:13.000Z" } ], "analyses": { "subjects": [ "35J60", "35A15" ], "keywords": [ "quasilinear elliptic field equation", "multiplicity", "quasilinear field equation", "singular function", "establish existence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }