{ "id": "1702.04327", "version": "v1", "published": "2017-02-14T18:29:25.000Z", "updated": "2017-02-14T18:29:25.000Z", "title": "The Biot-Savart operator of a bounded domain", "authors": [ "Alberto Enciso", "Maria de los Angeles Garcia-Ferrero", "Daniel Peralta-Salas" ], "comment": "26 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We construct the analog of the Biot-Savart integral for bounded domains. Specifically, we show that the velocity field of an incompressible fluid with tangency boundary conditions on a bounded domain can be written in terms of its vorticity using an integral kernel $K_\\Omega(x,y)$ that has an inverse-square singularity on the diagonal.", "revisions": [ { "version": "v1", "updated": "2017-02-14T18:29:25.000Z" } ], "analyses": { "keywords": [ "bounded domain", "biot-savart operator", "tangency boundary conditions", "inverse-square singularity", "biot-savart integral" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable" } } }