{ "id": "1702.04313", "version": "v1", "published": "2017-02-14T17:57:39.000Z", "updated": "2017-02-14T17:57:39.000Z", "title": "Terminal-Pairability in Complete Bipartite Graphs", "authors": [ "Lucas Colucci", "Péter L. Erdős", "Ervin Győri", "Tamás Róbert Mezei" ], "comment": "8 pages", "categories": [ "math.CO" ], "abstract": "We investigate the terminal-pairibility problem in the case when the base graph is a complete bipartite graph, and the demand graph is also bipartite with the same color classes. We improve the lower bound on maximum value of $\\Delta(D)$ which still guarantees that the demand graph $D$ is terminal-pairable in this setting. We also prove a sharp theorem on the maximum number of edges such a demand graph can have.", "revisions": [ { "version": "v1", "updated": "2017-02-14T17:57:39.000Z" } ], "analyses": { "keywords": [ "complete bipartite graph", "demand graph", "terminal-pairability", "base graph", "terminal-pairibility problem" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }