{ "id": "1702.03623", "version": "v1", "published": "2017-02-13T04:17:22.000Z", "updated": "2017-02-13T04:17:22.000Z", "title": "Connections on parahoric torsors over curves", "authors": [ "Vikraman Balaji", "Indranil Biswas", "Yashonidhi Pandey" ], "categories": [ "math.AG", "math.DG" ], "abstract": "We define parahoric $\\cG$--torsors for certain Bruhat--Tits group scheme $\\cG$ on a smooth complex projective curve $X$ when the weights are real, and also define connections on them. We prove that a $\\cG$--torsor is given by a homomorphism from $\\pi_1(X\\setminus D)$ to a maximal compact subgroup of $G$, where $D\\, \\subset\\, X$ is the parabolic divisor, if and only if the torsor is polystable.", "revisions": [ { "version": "v1", "updated": "2017-02-13T04:17:22.000Z" } ], "analyses": { "subjects": [ "14F05", "14L30" ], "keywords": [ "parahoric torsors", "bruhat-tits group scheme", "maximal compact subgroup", "smooth complex projective curve", "define parahoric" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }