{ "id": "1702.02202", "version": "v1", "published": "2017-02-07T21:17:06.000Z", "updated": "2017-02-07T21:17:06.000Z", "title": "Hardy-Sobolev inequality with singularity a curve", "authors": [ "Mouhamed Moustapha Fall", "El hadji Abdoulaye Thiam" ], "comment": "27 pages", "categories": [ "math.AP", "math.DG" ], "abstract": "We consider a bounded domain $\\Omega$ of $\\mathbb{R}^N$, $N\\geq 3$, and $h$ a continuous function on $\\Omega$. Let $\\Gamma$ be a closed curve contained in $\\Omega$. We study existence of positive solutions $u\\in H^1_0(\\Omega)$ to the equation $$ -\\Delta u+h u=\\rho^{-\\sigma}_\\Gamma u^{2^*_\\sigma-1} \\qquad \\textrm{ in } \\Omega $$ where $2^*_\\sigma:=\\frac{2(N-\\sigma)}{N-2}$, $\\sigma\\in (0,2)$, and $\\rho_\\Gamma$ is the distance function to $\\Gamma$. For $N\\geq 4$, we find a sufficient condition, given by the local geometry of the curve, for the existence of a ground-state solution. In the case $N=3$, we obtain existence of ground-state solution provided the trace of the regular part of the Green of $-\\Delta+h$ is positive at a point of the curve.", "revisions": [ { "version": "v1", "updated": "2017-02-07T21:17:06.000Z" } ], "analyses": { "keywords": [ "hardy-sobolev inequality", "singularity", "ground-state solution", "local geometry", "study existence" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable" } } }