{ "id": "1702.02129", "version": "v1", "published": "2017-02-07T18:28:51.000Z", "updated": "2017-02-07T18:28:51.000Z", "title": "On stabilization of solutions of nonlinear parabolic equations with a gradient term", "authors": [ "Andrej A. Kon'kov" ], "categories": [ "math.AP" ], "abstract": "For parabolic equations of the form $$ \\frac{\\partial u}{\\partial t} - \\sum_{i,j=1}^n a_{ij} (x, u) \\frac{\\partial^2 u}{\\partial x_i \\partial x_j} + f (x, u, D u) = 0 \\quad \\mbox{in } {\\mathbb R}_+^{n+1}, $$ where ${\\mathbb R}_+^{n+1} = {\\mathbb R}^n \\times (0, \\infty)$, $n \\ge 1$, $D = (\\partial / \\partial x_1, \\ldots, \\partial / \\partial x_n)$ is the gradient operator, and $f$ is some function, we obtain conditions guaranteeing that every solution tends to zero as $t \\to \\infty$.", "revisions": [ { "version": "v1", "updated": "2017-02-07T18:28:51.000Z" } ], "analyses": { "keywords": [ "nonlinear parabolic equations", "gradient term", "stabilization", "gradient operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }