{ "id": "1702.01684", "version": "v1", "published": "2017-02-06T16:22:14.000Z", "updated": "2017-02-06T16:22:14.000Z", "title": "On the density of rational points on rational elliptic surfaces", "authors": [ "Julie Desjardins" ], "comment": "31 pages, comments welcome", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $\\mathscr{E}\\rightarrow\\mathbb{P}^1_\\mathbb{Q}$ be a non-trivial rational elliptic surface over $\\mathbb{Q}$ with base $\\mathbb{P}^1_\\mathbb{Q}$ (with a section). We show the Zariski-density of the rational points of $\\mathscr{E}$ when $\\mathscr{E}$ is isotrivial with non-zero $j$-invariant and when $\\mathscr{E}$ is non-isotrivial with a fiber of type $II^*$, $III^*$, $IV^*$ or $I^*_m$ ($m\\geq0$). Moreover, we produce examples of non-trivial elliptic surfaces whose rational points might not be dense. However, given the result at our disposal, we conjecture that any non-trivial elliptic surface has a dense set of $\\mathbb{Q}$-rational points.", "revisions": [ { "version": "v1", "updated": "2017-02-06T16:22:14.000Z" } ], "analyses": { "subjects": [ "14G05", "14J27", "14J26" ], "keywords": [ "rational points", "non-trivial elliptic surface", "non-trivial rational elliptic surface", "produce examples", "dense set" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }