{ "id": "1702.01321", "version": "v1", "published": "2017-02-04T18:34:53.000Z", "updated": "2017-02-04T18:34:53.000Z", "title": "A short note on the order of the Zhang-Liu matrices over arbitrary fields", "authors": [ "Leo Betthauser", "Josh Hiller" ], "comment": "Keywords: Pascal Matrix, cyclic group orders, eigenvectors, binomial coefficients, finite fields", "categories": [ "math.CO" ], "abstract": "We give necessary and sufficient conditions for the Zhang-Liu matrices to be diagonalizable over arbitrary fields and provide the eigen-decomposition when it is possible. We use this result to calculate the order of these matrices over any arbitrary field. This generalizes a result of the second author.", "revisions": [ { "version": "v1", "updated": "2017-02-04T18:34:53.000Z" } ], "analyses": { "subjects": [ "15B36", "20H30" ], "keywords": [ "arbitrary field", "zhang-liu matrices", "short note", "second author" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }