{ "id": "1702.01258", "version": "v1", "published": "2017-02-04T09:18:35.000Z", "updated": "2017-02-04T09:18:35.000Z", "title": "On two functionals involving the maximum of the torsion function", "authors": [ "Antoine Henrot", "Ilaria Lucardesi", "Gérard Philippin" ], "categories": [ "math.AP" ], "abstract": "In this paper we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely, we consider $T(\\Omega)/(M(\\Omega)|\\Omega|)$ and $M(\\Omega)\\lambda_1(\\Omega) $, where $\\Omega$ is a bounded open set of $\\mathbb{R}^d$ with finite Lebesgue measure $|\\Omega|$, $M(\\Omega)$ denotes the maximum of the torsion function, $T(\\Omega)$ the torsion, and $\\lambda_1(\\Omega)$ the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.", "revisions": [ { "version": "v1", "updated": "2017-02-04T09:18:35.000Z" } ], "analyses": { "subjects": [ "35P15", "49R05", "35J25", "35B27", "49Q10" ], "keywords": [ "torsion function", "first dirichlet eigenvalue", "finite lebesgue measure", "lower bounds", "shape functionals" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }