{ "id": "1702.00807", "version": "v1", "published": "2017-02-02T19:26:50.000Z", "updated": "2017-02-02T19:26:50.000Z", "title": "Zero-sum invariants of finite abelian groups", "authors": [ "Weidong Gao", "Yuanlin Li", "Jiangtao Peng", "Guoqing Wang" ], "categories": [ "math.CO", "math.NT" ], "abstract": "The purpose of the article is to provide an unified way to formulate zero-sum invariants. Let $G$ be a finite additive abelian group. Let $B(G)$ denote the set consisting of all nonempty zero-sum sequences over G. For $\\Omega \\subset B(G$), let $d_{\\Omega}(G)$ be the smallest integer $t$ such that every sequence $S$ over $G$ of length $|S|\\geq t$ has a subsequence in $\\Omega$.We provide some first results and open problems on $d_{\\Omega}(G)$.", "revisions": [ { "version": "v1", "updated": "2017-02-02T19:26:50.000Z" } ], "analyses": { "subjects": [ "11P70" ], "keywords": [ "finite abelian groups", "formulate zero-sum invariants", "finite additive abelian group", "nonempty zero-sum sequences", "open problems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }