{ "id": "1702.00263", "version": "v1", "published": "2017-02-01T14:03:38.000Z", "updated": "2017-02-01T14:03:38.000Z", "title": "Symmetry breaking for orthogonal groups and a conjecture by B.~Gross and D.~Prasad", "authors": [ "Toshiyuki Kobayashi", "Birgit Speh" ], "categories": [ "math.RT", "math.NT" ], "abstract": "We consider irreducible unitary representations $A_i$ of G=SO(n+1,1) with the same infinitesimal character as the trivial representation and representations $B_j$ of H=SO(n,1) with the same properties and discuss H-equivariant homomorphisms Hom_H($A_i,B_j$). For tempered representations our results confirm the predictions of Gross-Prasad conjectures.", "revisions": [ { "version": "v1", "updated": "2017-02-01T14:03:38.000Z" } ], "analyses": { "keywords": [ "orthogonal groups", "symmetry breaking", "results confirm", "irreducible unitary representations", "h-equivariant homomorphisms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }