{ "id": "1701.09176", "version": "v1", "published": "2017-01-31T18:41:35.000Z", "updated": "2017-01-31T18:41:35.000Z", "title": "On the real spectrum of a product of Gaussian random matrices", "authors": [ "Nick Simm" ], "comment": "11 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "Let $X_{m} = G_{1}\\ldots G_{m}$ denote the product of $m$ independent random matrices of size $N \\times N$, with each matrix in the product consisting of independent standard Gaussian variables. Denoting by $N_{\\mathbb{R}}(m)$ the total number of real eigenvalues of $X_{m}$, we show that for $m$ fixed \\begin{equation*} \\mathbb{E}(N_{\\mathbb{R}}(m)) = \\sqrt{\\frac{2Nm}{\\pi}}+O(\\log(N)), \\qquad N \\to \\infty. \\end{equation*} This generalizes a well-known result of Edelman et al. \\cite{EKS94} to all $m>1$. Furthermore, we show that the normalized global density of real eigenvalues converges weakly in expectation to the density of the random variable $|U|^{m}B$ where $U$ is uniform on $[-1,1]$ and $B$ is Bernoulli on $\\{-1,1\\}$. This proves a conjecture of Forrester and Ipsen \\cite{FI16}. The results are obtained by the asymptotic analysis of a certain Meijer G-function.", "revisions": [ { "version": "v1", "updated": "2017-01-31T18:41:35.000Z" } ], "analyses": { "subjects": [ "15B52", "60B20" ], "keywords": [ "gaussian random matrices", "real spectrum", "independent standard gaussian variables", "real eigenvalues converges", "independent random matrices" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }