{ "id": "1701.08743", "version": "v1", "published": "2017-01-30T18:29:36.000Z", "updated": "2017-01-30T18:29:36.000Z", "title": "Decay of correlations, quantitative recurrence and logarithm law for Rovella attractors", "authors": [ "Stefano Galatolo", "Isaia Nisoli", "Maria José Pacifico" ], "comment": "23 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "In this paper we prove that a class of skew products maps with non uniformly hyperbolic base has exponential decay of correlations. We apply this to obtain a logarithm law for the hitting time associated to a contracting Lorenz (or Rovella) attractor at all the points having a well defined local dimension, and a quantitative recurrence estimation.", "revisions": [ { "version": "v1", "updated": "2017-01-30T18:29:36.000Z" } ], "analyses": { "subjects": [ "37C10", "37C45", "37C40", "37D25" ], "keywords": [ "logarithm law", "rovella attractors", "correlations", "non uniformly hyperbolic base", "skew products maps" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }