{ "id": "1701.08678", "version": "v1", "published": "2017-01-30T16:22:12.000Z", "updated": "2017-01-30T16:22:12.000Z", "title": "Onsager's conjecture for admissible weak solutions", "authors": [ "Tristan Buckmaster", "Camillo De Lellis", "László Székelyhidi Jr.", "Vlad Vicol" ], "comment": "36 pages, 1 figure", "categories": [ "math.AP" ], "abstract": "We prove that given any $\\beta<1/3$, a time interval $[0,T]$, and given any smooth energy profile $e \\colon [0,T] \\to (0,\\infty)$, there exists a weak solution $v$ of the three-dimensional Euler equations such that $v \\in C^{\\beta}([0,T]\\times \\mathbb{T}^3)$, with $e(t) = \\int_{\\mathbb{T}^3} |v(x,t)|^2 dx$ for all $t\\in [0,T]$. Moreover, we show that a suitable $h$-principle holds in the regularity class $C^\\beta_{t,x}$, for any $\\beta<1/3$. The implication of this is that the dissipative solutions we construct are in a sense typical in the appropriate space of subsolutions as opposed to just isolated examples.", "revisions": [ { "version": "v1", "updated": "2017-01-30T16:22:12.000Z" } ], "analyses": { "subjects": [ "35Q31", "35D30", "76B03" ], "keywords": [ "admissible weak solutions", "onsagers conjecture", "three-dimensional euler equations", "time interval", "principle holds" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable" } } }