{ "id": "1701.08578", "version": "v1", "published": "2017-01-30T13:11:49.000Z", "updated": "2017-01-30T13:11:49.000Z", "title": "Measures of full dimension on self-affine sets", "authors": [ "Antti Käenmäki" ], "journal": "Acta Univ. Carolin. Math. Phys. 45 (2004), no. 2, 45-53", "categories": [ "math.DS" ], "abstract": "Under the assumption of a natural subadditive potential, the so called cylinder function, working on the symbol space we prove the existence of the ergodic invariant probability measure satisfying the equilibrium state. As an application we show that for typical self-affine sets there exists an ergodic invariant measure having the same Hausdorff dimension as the set itself.", "revisions": [ { "version": "v1", "updated": "2017-01-30T13:11:49.000Z" } ], "analyses": { "keywords": [ "full dimension", "ergodic invariant probability measure satisfying", "ergodic invariant measure", "symbol space", "hausdorff dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }