{ "id": "1701.08411", "version": "v1", "published": "2017-01-29T18:04:43.000Z", "updated": "2017-01-29T18:04:43.000Z", "title": "A cellular algebra with specific decomposition of the unity", "authors": [ "Mufida M. Hmaida" ], "comment": "10pages", "categories": [ "math.RT" ], "abstract": "Let $ \\mathbb{A}$ be a cellular algebra over a field $\\mathbb{F}$ with a decomposition of the identity $ 1_{\\mathbb{A}} $ into orthogonal idempotents $ e_i$, $i \\in I$ (for some finite set $I$) satisfying some properties. We describe the entire Loewy structure of cell modules of the algebra $ \\mathbb{A} $ by using the representation theory of the algebra $ e_i \\mathbb{A} e_i $ for each $ i $. Moreover, we also study the block theory of $\\mathbb{A}$ by using this decomposition.", "revisions": [ { "version": "v1", "updated": "2017-01-29T18:04:43.000Z" } ], "analyses": { "keywords": [ "cellular algebra", "specific decomposition", "entire loewy structure", "representation theory", "cell modules" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }