{ "id": "1701.08335", "version": "v1", "published": "2017-01-29T00:02:48.000Z", "updated": "2017-01-29T00:02:48.000Z", "title": "Decomposing the Complete $r$-Graph", "authors": [ "Imre Leader", "Luka Milićević", "Ta Sheng Tan" ], "categories": [ "math.CO" ], "abstract": "Let $f_r(n)$ be the minimum number of complete $r$-partite $r$-graphs needed to partition the edge set of the complete $r$-uniform hypergraph on $n$ vertices. Graham and Pollak showed that $f_2(n) = n-1$. An easy construction shows that $f_r(n)\\le (1-o(1))\\binom{n}{\\lfloor r/2\\rfloor}$ and it has been unknown if this upper bound is asymptotically sharp. In this paper we show that $f_r(n)\\le (\\frac{14}{15}+o(1))\\binom{n}{r/2}$ for each even $r\\ge 4$.", "revisions": [ { "version": "v1", "updated": "2017-01-29T00:02:48.000Z" } ], "analyses": { "subjects": [ "05D05", "05C70" ], "keywords": [ "uniform hypergraph", "upper bound", "minimum number", "decomposing", "edge set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }