{ "id": "1701.08249", "version": "v1", "published": "2017-01-28T04:55:09.000Z", "updated": "2017-01-28T04:55:09.000Z", "title": "A sharp Adams inequality in dimension four and its extremal functions", "authors": [ "Van Hoang Nguyen" ], "comment": "33 pages, comment are welcome", "categories": [ "math.FA", "math.AP" ], "abstract": "Let $\\Omega$ be a smooth oriented bounded domain in $\\mathbb R^4$, $H_0^2(\\Omega)$ be the Sobolev space, and $\\lambda_1(\\Omega)= \\inf \\{\\|\\Delta u\\|_2^2 : u\\in H_0^2(\\Omega), \\|u\\|_2 =1\\}$ be the first eigenvalue of the bi-Laplacian operator $\\Delta^2$ on $\\Omega$. For $\\alpha \\in [0,\\lambda_1(\\Omega))$, we define $\\|u\\|_{2,\\alpha}^2 = \\|\\Delta u\\|_2^2 - \\alpha \\|u\\|_2^2$, for $u \\in H_0^2(\\Omega)$. In this paper, we will prove the following inequality \\[ \\sup_{u\\in H_0^2(\\Omega),\\, \\|u\\|_{2,\\alpha} \\leq 1} \\int_{\\Omega} e^{32 \\pi^2 u(x)^2} dx < \\infty. \\] This strengthens a recent result of Lu and Yang \\cite{LuYang}. We also show that there exists a function $u^*\\in H_0^2(\\Omega)\\cap C^4(\\overline{\\Omega})$ such that $\\|u^*\\|_{2,\\alpha} =1$ and the supremum above is attained by $u^*$. Our proofs are based on the blow-up analysis method.", "revisions": [ { "version": "v1", "updated": "2017-01-28T04:55:09.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "sharp adams inequality", "extremal functions", "blow-up analysis method", "bi-laplacian operator", "sobolev space" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }