{ "id": "1701.08139", "version": "v1", "published": "2017-01-27T18:26:28.000Z", "updated": "2017-01-27T18:26:28.000Z", "title": "Quantitative multiple recurrence for two and three transformations", "authors": [ "Sebastián Donoso", "Wenbo Sun" ], "categories": [ "math.DS", "math.CO" ], "abstract": "We provide various counter examples for quantitative multiple recurrence problems for systems with more than one transformation. We show that $\\bullet$ There exists an ergodic system $(X,\\mathcal{X},\\mu,T_1,T_2)$ with two commuting transformations such that for every $0<\\ell< 4$, there exists $A\\in\\mathcal{X}$ such that $$\\mu(A\\cap T_{1}^{-n}A\\cap T_{2}^{-n}A)<\\mu(A)^{\\ell} \\text{ for every } n\\neq 0;$$ $\\bullet$ There exists an ergodic system $(X,\\mathcal{X},\\mu,T_1,T_2, T_{3})$ with three commuting transformations such that for every $\\ell>0$, there exists $A\\in\\mathcal{X}$ such that $$\\mu(A\\cap T_{1}^{-n}A\\cap T_{2}^{-n}A\\cap T_{3}^{-n}A)<\\mu(A)^{\\ell} \\text{ for every } n\\neq 0;$$ $\\bullet$ There exists an ergodic system $(X,\\mathcal{X},\\mu,T_1,T_2)$ with two transformations generating a 2-step nilpotent group such that for every $\\ell>0$, there exists $A\\in\\mathcal{X}$ such that $$\\mu(A\\cap T_{1}^{-n}A\\cap T_{2}^{-n}A)<\\mu(A)^{\\ell} \\text{ for every } n\\neq 0.$$", "revisions": [ { "version": "v1", "updated": "2017-01-27T18:26:28.000Z" } ], "analyses": { "subjects": [ "37A30", "05A20" ], "keywords": [ "ergodic system", "quantitative multiple recurrence problems", "commuting transformations", "counter examples", "nilpotent group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }