{ "id": "1701.08026", "version": "v1", "published": "2017-01-27T12:21:56.000Z", "updated": "2017-01-27T12:21:56.000Z", "title": "Curvature in Hamiltonian Mechanics And The Einstein-Maxwell-Dilaton Action", "authors": [ "S. G. Rajeev" ], "comment": "2 figs", "categories": [ "math-ph", "hep-th", "math.MP" ], "abstract": "Riemannian geometry is a particular case of Hamiltonian mechanics: the orbits of the hamiltonian $H=\\frac{1}{2}g^{ij}p_{i}p_{j}$ are the geodesics. Given a symplectic manifold (\\Gamma,\\omega), a hamiltonian $H:\\Gamma\\to\\mathbb{R}$ and a Lagrangian sub-manifold $M\\subset\\Gamma$ we find a generalization of the notion of curvature. The particular case $H=\\frac{1}{2}g^{ij}\\left[p_{i}-A_{i}\\right]\\left[p_{j}-A_{j}\\right]+\\phi $ of a particle moving in a gravitational, electromagnetic and scalar fields is studied in more detail. The integral of the generalized Ricci tensor w.r.t. the Boltzmann weight reduces to the action principle $\\int\\left[R+\\frac{1}{4}F_{ik}F_{jl}g^{kl}g^{ij}-g^{ij}\\partial_{i}\\phi\\partial_{j}\\phi\\right]e^{-\\phi}\\sqrt{g}d^{n}q$ for the scalar, vector and tensor fields.", "revisions": [ { "version": "v1", "updated": "2017-01-27T12:21:56.000Z" } ], "analyses": { "keywords": [ "hamiltonian mechanics", "einstein-maxwell-dilaton action", "boltzmann weight reduces", "riemannian geometry", "tensor fields" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }