{ "id": "1701.07777", "version": "v1", "published": "2017-01-26T17:13:16.000Z", "updated": "2017-01-26T17:13:16.000Z", "title": "Henkin measures for the Drury-Arveson space", "authors": [ "Michael Hartz" ], "comment": "12 pages", "categories": [ "math.FA", "math.CV" ], "abstract": "We exhibit Borel probability measures on the unit sphere in $\\mathbb C^d$ for $d \\ge 2$ which are Henkin for the multiplier algebra of the Drury-Arveson space, but not Henkin in the classical sense. This provides a negative answer to a conjecture of Clou\\^atre and Davidson.", "revisions": [ { "version": "v1", "updated": "2017-01-26T17:13:16.000Z" } ], "analyses": { "subjects": [ "46E22", "47A13" ], "keywords": [ "drury-arveson space", "henkin measures", "borel probability measures", "multiplier algebra", "unit sphere" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }