{ "id": "1701.07476", "version": "v1", "published": "2017-01-25T20:33:58.000Z", "updated": "2017-01-25T20:33:58.000Z", "title": "The Smirnov class for spaces with the complete Pick property", "authors": [ "Alexandru Aleman", "Michael Hartz", "John E. McCarthy", "Stefan Richter" ], "comment": "18 pages", "categories": [ "math.FA", "math.CV" ], "abstract": "We show that every function in a reproducing kernel Hilbert space with a normalized complete Pick kernel is the quotient of a multiplier and a cyclic multiplier. This extends a theorem of Alpay, Bolotnikov and Kaptano\\u{g}lu. We explore various consequences of this result regarding zero sets, spaces on compact sets and Gleason parts. In particular, using a construction of Salas, we exhibit a rotationally invariant complete Pick space of analytic functions on the unit disc for which the corona theorem fails.", "revisions": [ { "version": "v1", "updated": "2017-01-25T20:33:58.000Z" } ], "analyses": { "subjects": [ "46E22", "30H15", "30H80" ], "keywords": [ "complete pick property", "smirnov class", "rotationally invariant complete pick space", "normalized complete pick kernel", "corona theorem fails" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }