{ "id": "1701.07329", "version": "v1", "published": "2017-01-25T14:21:06.000Z", "updated": "2017-01-25T14:21:06.000Z", "title": "Deligne-Lusztig duality and wonderful compactification", "authors": [ "Joseph Bernstein", "Roman Bezrukavnikov", "David Kazhdan" ], "comment": "12pp", "categories": [ "math.RT" ], "abstract": "We use geometry of the wonderful compactification to obtain a new proof of the relation between Deligne-Lusztig (or Alvis-Curtis) duality for $p$-adic groups to homological duality. This provides a new way to introduce an involution on the set of irreducible representations of the group, which has been earlier defined by A. Zelevinsky for $G=GL(n)$ by A.-M. Aubert in general.", "revisions": [ { "version": "v1", "updated": "2017-01-25T14:21:06.000Z" } ], "analyses": { "keywords": [ "wonderful compactification", "deligne-lusztig duality", "adic groups", "homological duality", "involution" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }