{ "id": "1701.06873", "version": "v1", "published": "2017-01-24T13:57:31.000Z", "updated": "2017-01-24T13:57:31.000Z", "title": "On the differentiability of hairs for Zorich maps", "authors": [ "Patrick Comdühr" ], "comment": "20 pages", "categories": [ "math.DS", "math.CV" ], "abstract": "Devaney and Krych showed that for the exponential family $\\lambda e^z$, where $0<\\lambda <1/e$, the Julia set consists of uncountably many pairwise disjoint simple curves tending to $\\infty$. Viana proved that these curves are smooth. In this article we consider a quasiregular counterpart of the exponential map, the so-called Zorich maps, and generalize Viana's result to these maps.", "revisions": [ { "version": "v1", "updated": "2017-01-24T13:57:31.000Z" } ], "analyses": { "subjects": [ "37F10", "30C65", "30D05" ], "keywords": [ "zorich maps", "differentiability", "julia set consists", "pairwise disjoint simple curves tending", "quasiregular counterpart" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }