{ "id": "1701.06778", "version": "v1", "published": "2017-01-24T09:20:55.000Z", "updated": "2017-01-24T09:20:55.000Z", "title": "Truncation Dimension for Linear Problems on Multivariate Function Spaces", "authors": [ "Aicke Hinrichs", "Peter Kritzer", "Friedrich Pillichshammer", "G. W. Wasilkowski" ], "categories": [ "math.NA" ], "abstract": "The paper considers linear problems on weighted spaces of high-dimensional functions. The main questions addressed are: When is it possible to approximate the original function of very many variables by the same function; however with all but the first $k$ variables set to zero, so that the corresponding error is small? What is the truncation dimension, i.e., the smallest number $k=k(\\varepsilon)$ such that the corresponding error is bounded by a given error demand $\\varepsilon$? Surprisingly, $k(\\varepsilon)$ could be very small.", "revisions": [ { "version": "v1", "updated": "2017-01-24T09:20:55.000Z" } ], "analyses": { "subjects": [ "65Y20", "65D30" ], "keywords": [ "multivariate function spaces", "linear problems", "truncation dimension", "corresponding error", "high-dimensional functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }