{ "id": "1701.06608", "version": "v1", "published": "2017-01-23T19:58:31.000Z", "updated": "2017-01-23T19:58:31.000Z", "title": "Linear correlations of the divisor function", "authors": [ "Sandro Bettin" ], "comment": "49 pages", "categories": [ "math.NT" ], "abstract": "Motivated by arithmetic applications on the number of points in a bihomogeneous variety and on moments of Dirichlet $L$-functions, we provide analytic continuation for the series $\\mathcal A_{\\boldsymbol{a}}(s):=\\sum_{n_1,\\dots,n_k\\geq1}\\frac{d(n_1)\\cdots d(n_k)}{(n_1\\cdots n_k)^{s}}$ with the sum restricted to solutions of a non-trivial linear equation $a_1n_1+\\cdots+a_kn_k=0$. The series $\\mathcal A_{\\boldsymbol{a}}(s)$ converges absolutely for $\\Re(s)>1-\\frac1k$ and we show it can be meromorphically continued to $\\Re(s)>1-\\frac 2{k+1}$ with poles at $s=1-\\frac1{k-j}$ only, for $1\\leq j< (k-1)/2$. As an application, we obtain an asymptotic formula with power saving error term for the number of points in the variety $a_1x_1y_1+\\cdots+a_kx_ky_k=0$ in $\\mathbb P^{k-1}(\\mathbb Q)\\times \\mathbb P^{k-1}(\\mathbb Q)$.", "revisions": [ { "version": "v1", "updated": "2017-01-23T19:58:31.000Z" } ], "analyses": { "subjects": [ "11M41", "11N37", "11D72" ], "keywords": [ "divisor function", "linear correlations", "non-trivial linear equation", "power saving error term", "analytic continuation" ], "note": { "typesetting": "TeX", "pages": 49, "language": "en", "license": "arXiv", "status": "editable" } } }