{ "id": "1701.04995", "version": "v1", "published": "2017-01-18T10:07:10.000Z", "updated": "2017-01-18T10:07:10.000Z", "title": "Christoffel formula for kernel polynomials on the unit circle", "authors": [ "Cleonice F. Bracciali", "Andrei Martínez-Finkelshtein", "A. Sri Ranga", "Daniel O. Veronese" ], "categories": [ "math.CA" ], "abstract": "Given a nontrivial positive measure $\\mu$ on the unit circle, the associated Christoffel-Darboux kernels are $K_n(z, w;\\mu) = \\sum_{k=0}^{n}\\overline{\\varphi_{k}(w;\\mu)}\\,\\varphi_{k}(z;\\mu)$, $n \\geq 0$, where $\\varphi_{k}(\\cdot; \\mu)$ are the orthonormal polynomials with respect to the measure $\\mu$. Let the positive measure $\\nu$ on the unit circle be given by $d \\nu(z) = |G_{2m}(z)|\\, d \\mu(z)$, where $G_{2m}$ is a conjugate reciprocal polynomial of exact degree $2m$. We establish a determinantal formula expressing $\\{K_n(z,w;\\nu)\\}_{n \\geq 0}$ directly in terms of $\\{K_n(z,w;\\mu)\\}_{n \\geq 0}$. Furthermore, we consider the special case of $w=1$; it is known that appropriately normalized polynomials $K_n(z,1;\\mu) $ satisfy a recurrence relation whose coefficients are given in terms of two sets of real parameters $ \\{c_n(\\mu)\\}_{n=1}^{\\infty}$ and $ \\{g_{n}(\\mu)\\}_{n=1}^{\\infty}$, with $0