{ "id": "1701.04885", "version": "v1", "published": "2017-01-17T22:03:25.000Z", "updated": "2017-01-17T22:03:25.000Z", "title": "Interpolating sequences in spaces with the complete Pick property", "authors": [ "Alexandru Aleman", "Michael Hartz", "John E. McCarthy", "Stefan Richter" ], "categories": [ "math.FA" ], "abstract": "We characterize interpolating sequences for multiplier algebras of spaces with the complete Pick property. Specifically, we show that a sequence is interpolating if and only if it is separated and generates a Carleson measure. This generalizes results of Carleson for the Hardy space and of Bishop, Marshall and Sundberg for the Dirichlet space. Furthermore, we investigate interpolating sequences for pairs of Hilbert function spaces.", "revisions": [ { "version": "v1", "updated": "2017-01-17T22:03:25.000Z" } ], "analyses": { "subjects": [ "46E22" ], "keywords": [ "complete pick property", "interpolating sequences", "hilbert function spaces", "dirichlet space", "carleson measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }