{ "id": "1701.04796", "version": "v1", "published": "2017-01-17T18:21:24.000Z", "updated": "2017-01-17T18:21:24.000Z", "title": "Repulsion in low temperature $β$-ensembles", "authors": [ "Yacin Ameur" ], "categories": [ "math.PR", "math-ph", "math.CV", "math.MP" ], "abstract": "We prove a result on non-clustering of particles in a two-dimensional Coulomb plasma, which holds provided that the inverse temperature $\\beta$ satisfies $\\beta>1$. As a consequence we obtain a result on crystallization as $\\beta\\to\\infty$: the particles will, on a microscopic scale, appear at a certain distance from each other. The estimation of this distance is connected to Abrikosov's conjecture that the particles should freeze up according to a honeycomb lattice when $\\beta\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2017-01-17T18:21:24.000Z" } ], "analyses": { "keywords": [ "low temperature", "two-dimensional coulomb plasma", "inverse temperature", "microscopic scale", "abrikosovs conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }